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FOREWORD

The principal objective of Contract NAS8-20323, Research in Stability of
Periodic Motions, is to derive?éxact analytical results concerning the degree
of instability of certain periodic orbits in the restricted and reduced three
body problems. However, before this problem can be formulated, considerable
background material must be assimilated. This report summarizes the background
material studied during this period of contract performance.

This investigation is being performed by ILMSC/HREC for the Aero-Astrodynamics

Laboratory of the George C. Marshall Space Flight Center.
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SUMMARY

For this investigation, the book by Dr. Carl Ludwig Siegel, Vorlesungen

uber Himmelsmechanik,is the basic reference. Consequently, during the initial

period, this reference work was emphasized and chapters 1 through 16 and 19
were read. A brief summary of the material from these chapters deemed most

important to the contractual objective is presented.
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INTRODUCTION

A discovery of particular significance to astronautics is the existence,
within the context of the restricted and reduced three body problems, of periodic
orbits enclosing the Earth and Moon. These orbits have great potential applica-
tion for future space missions. However, before these orbits can be exploited,
their dynamical characteristics, in particular their stability properties, must
be completely understood.

The purpose of this investigation is to develop procedures for evaluating the
stability of approximately periodic motion for a specified, finite time. The
primary emphasis will be upon the area-preserving mapping near a fixed point
developed by Birkhoff and extended by Moser and Arnold. In this context, the
fixed point is the true periodic orbit which closes exactly upon itself after
a time t = T = period. Using this method, a small neighborhood of the fixed
point at t = O is mapped into the corresponding neighborhood at t = T. In this
way, rigorous analytical results concerning the stability of the approximate

periodic motions can be obtained.
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TECHNICAL DISCUSSION

For most problems in theoretical celestial mechanics, a Hamiltonian formula-
tion is standard since, by suitable canonical transformations, the invariants
of the motion will emerge and, also, the form of the differential equations

will be preserved.

Consider the column vector z composed of n position and momentum components

Xy and Yy, respectively. Then the Hamiltonian equations can be written

i:J%% =J_HE (1)

where J is a 2n x 2n matrix composed of two identity matrices

Introducing new variables ék, M, the necessary and sufficient condition
for the preservation of the Hamiltonian form of the equations is sought. 1f ¢

is the column vector of the 5k, Uk, the substitution can be written

t, = 'Zk(i,, A t) K=42",2n (3)

The functional matrix of the substitution is written

M = 'Z;_ = <-g——zzi-—> kll-.:/,z,“';z” ()-‘)

and it is required that the transformation of variables is reversible. Thus

,Ml £ 0 (M_l then exists). Now, the appropriate condition satisfied by all the

desired reversible transformations is

M7TITM = AT (5)
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where A # 0 is a scalar constant. The matrix M is termed symplectic (if A = 1)
and, in general, the substitution (3) is termed canonical.

The solution of the Hamiltonian equations of motion can be transformed to
the solution of the Hamilton-Jacobi partial differential equation. This rather
elegant technique is based upon the determination of a generating function

W= W(x, 7, t) such that the old Hamiltonian system

X = H‘/k Yo = = hex (k=142 n) (6)
is transformed to a new Hamiltonian system

§, = -

k H?]k e = _ka (7)

This generating function in fact constructs the desired canonical transformation

of variables by the relationships

Ye = Wi, o= -wn, (&=12...,) 8)
H o= 4+ 42

with the assumption, which must be confirmed, that
W o
‘ Xy e ] # (9)

The simplest case for the transformed system (7) would be H(§, 7, t) = O

for then we would have

6K=O J Ny =0 (10)
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the so-called normal form which is immediately integrable with the Gk, Ny

entering as 2n integration constants. The last equation in (8) then is
H = Hx,ys )+ We = H({X, We , £) + We = © (11)

the Hamilton-Jacobi partial differential equation for the generating function
w - w(x’n, t!)o
In order to demonstrate this technique, the following simple example is

presented. Consider

H=%+Yy" +xvy

with

X,

>./l=—x' ==Y

H‘/’ = yl','XI

(12)
which has the solution
Y, = Yo e”®
X, = ce’ — Yo 7F e = Xo L
Xio = X2,  y, = ¥ (o) (13)

Now the canonical integration constants 61, ”1 will be derived and related to

the initial conditions. The Hamilton-Jacobi equation is

'|i Wx'z + X Wx' + We =0 (11-3)

L
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and, since the explicit time dependence is only in the last term, we put
W(X" nu t) = w()(,’ ’II > - rl't (15)

Then

P oL o2X, Wy, — 2N, =0 (16)

Wy,

wx’ = —-X'i ’XI"* 2’7’ =},/

E A
W= -2 't./7xf+ 2M dy, — N, T

for the generating function. Now, the assumption W’x.l 1 ¥ 0 yields

-4
(x" + 2 7, ) # 0 (17)
and
-4
6, = Wn’ = i/(x,‘-;- 277,) dX' -t
t + & = 1 Ly (< + 7x,"+z'7,)
(18)
Finally
2
nl = X/o y,o + _y’_’__ = H
(19)

2
§ = # Loy (2 Yo +);,)
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It should be emphasized that these results have only a local character on
account of the requirement that certain functional determinants do not vanish.
In general, only certain domains of the variables are allowed.

The Cauchy Existence Theorem is next applied for a precise statement of

the allowable domains of the variables. If the Hamiltonian function H(x,y)

is analytic in each of the 2n variables %, y, in a region |x - §yx|< 2/,
\ Yk - ”k\'< 2P(k = 1, ..., n) for the initial conditions
Xe (7)) = Sk
(20)

Ye (7) = 7
and satisfies the estimate ‘H(x,y)l =<7 in that region, then the solutions

xk(t), yx(t) of the Hamiltonian system are regular for the time duration

\t —Tl< (zn+;/);m (e

and lie within the circles
Ixx(f) — ekl < p
(22)
lYk (t) — '7I<I<P

This result is derived by constructing a majorizing power series in such a way

that the general system of equations

Xe =F(x) (k=4 ovesm)

(23)
is majorized (dominated) by
)'," =;(7) (k‘,4..-,m) (2k4)
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and, furthermore, such that the majorant can be integrated directly. These
results are then extended to the Hamiltonian system of equations.

In the next chapters, it is shown that, for the three body problem, a triple
collision can only occur if all three components of the angular momentum of the
system are zero. Further, for a two body collision, it is shown that the col-
lision occurs at a specific point in space g (t = t1), k = 1; 2, 3, (q) denotes
either xy, yy, Zk) while at least one ék is unbounded as t — ty. Then it is
shown, by calculation of a suitable canonical transformation, that the equations
of motion can be regularized for binary collisions. In this way, the solution
can be analytically continued over the singularity at t = ty In the mathematical
statement of the problem, the two physical bodies collide at t = ty and rebound
elastically from each other.

Chapters 9 and 10 present the two Sundman lemmas. The first lemma states
that if the three components of the angular momentum of the system are not all
zero, then the sum of the mutual distances between the three bodies is higher
than a positive constant for all time. The second lemma states, if the same
assumptions are observed, that the velocity of the particle lying farthest
from the other two bodies will remain bounded for all time by a positive constant.
Then, with these two lemmas, Sundman's theorem is presented. This theorem states:
| If the three angular momentum components referred to the center of mass
are not all zero, then the Cartesian coordinates of the three bodies and the
time t can be expanded in power series in w, which converge for Ia’|<'l, and

which represent the motion for all time. Here

s t
wce - f s=f(v+/)dt

s

e'zﬂs_ + 7/ T (25)
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and

V" = potential energy = v (m, q)
&= $(A, m) is a positive number based upon the masses
and the initial conditions.
Next, in Chapter 1k, an important existence theorem for periodic solutions
of Hamiltonian systems is presented. We consider the system (1) with H(z)
regular in the neighborhood of the equilibrium solution at z = 0. H(z) is next

expanded in a power series beginning with quadratic terms

H(z) =% 27sz+- - (26)

where S is a symmetrical matrix of dimension (2n x 2n).
This series is to converge in some neighborhood of z = 0, and the 2n
eigenvalues t Ay, tAp, ..., ¥A, of JS are to be mutually distinct. The

existence theorem now states:

A A A
At:—x‘f)"'a-—xﬂ;

be equal to an integer. Then there is a family of real periodic solutions which

Let }\1 be purely imaginary and none of the n-1 quotients

depend analytically upon a real parameter P and, for P = 0, transform to the

equilibrium solution. Moreover, the period7(#) is analytic in P with

T0) = HT 7,7’

To illustrate this theorem, the example

Ho=% o #y) = p (6t 1) + 5 (X5 xa=Xa V=2 X0 1)

(27)
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is presented. The equations of motion are
Xi = Py — Xed, = Xt 4a Y, = = P X=X Xa kY oe
Xo = =2Pf =X o, gz 2P x. = 5(x*-9%)
(28)

This system possesses the egquilibrium solution xj = xp = yy v - 0 with the

obvious period T (0) = —2%—% = o ,
From inspection ~=0
p o o 0
o -2p o o
S =
o o P 1)
L 4 o -2p
(29)
and the eigenvalues of the linear system are
75~ Az = \A ~ u\
-A o P O
o -A o —2P
- = —A(=A" —2p*A)
= —p 0 -A Io)
0 -20 0 -A +p(+reP>+p A" )
= A"+ 5p2 Az 4 4p% =0
(30)

Thus A,,, = % 2Pi Aa,s = + ps

9
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Now A]_is purely imaginary and the quotient

A Fi l/

A z (31)

is not an integer. Thus, the conditions of the existence theorem are satisfied
and we are able to conclude the existence of periodic solutions of the system

(28) from the obvious periodic solutions of the linearized system (32).

).(;':p% 7.:"— px,

X, =—2Py, Y. = 2 PXa (32)

These periodic solutions of (28) have the approximate period

T = ZK:' = 7//0

In Chapter 19 Siegel presents the continuity method of Poincaré. Com-
mencing with a set of autonomous first order differential equations, with some
parametric dependence, and with sufficient conditions to ensure a solution in
some domain (Figure 1) a method of analytically continuing the solution in the
independent variable is given. Supposing that a periodic solution is known
for some set of initial conditions and parameters, the solution is extended to
other values of the parameter upon application of the implicit function theorem.

Now, consider a set of m first order autonomous differential equations

5(=7Ck (X, a) (k=t,c0,m) (33)

where x isa vector of the m dependent variables and & is a parameter. Regularity
of the fi(x, a) in’xﬂ - 6‘*1 <r, /=1, ..., m and A €G is sufficient to

ensure a solution of (33), which can be written formally as

10
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X = X(t, ¢, a) (31)

where & is a vector of the initial conditions.

Now it is assumed for € = ¢* and @ = @ that the solution is analytically
continuable to some time point t = tl, and, because of the regularity of the
functions involved, x = x(t, ¢, @) is continuable to t = tl for values of § , a
suf ficiently close to ¢ and a” respectively.

To ensure the existence of solutions of ;Ck = fk(x, a ) for variations in

3
the initial conditions suppose that the i‘k(x, a) are regular for\ 51 X, | <1,

&, - &,

regular in I&L - xll < r/2 since this region i:s completely contained in

Z=1, ..., m (see Figure 1). Now for < r/2 the fi(x,a) are

*
él - X, <T. The parameter g must also be restricted to some neighborhood

of @™, @ €G say, to ensure regularity of the fi,(x,@ ) when @ is varied. These
restrictions on the extent of the choice of the initial conditions within the
domain in which the f (x, @) are regular ensures the existence of a solution
for each & . Further, if the solution x = x(¢ , ¢~ , Q") is continuable from tg
to ty then the regularity conditions insure that x = x(t,& , @) is continuable

: *
to t; for § sufficiently close to § , a €G.

fo (@)

Y‘e’d/ar m

f;-xtl<r

:/’c'-}m

Restviction on Choree of

'?G;,Abovlad of e of‘fo{cnsarc re,u/.,.;{y
1 whick fz()(,a) ,,(X,a),,,
/3 ’¢;u/4/ 5"rroundln2 '

J.M. m

Figure 1 - Domain of Regularity of the
fk(x, a )
11
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Before proceeding further consider the specific case of the restricted three

body problem, in Hamiltonian form the equations of motion are:

.

X, = Xs, Xz = Xe J ).(3=2X¢+XI+F"I

x,=—ZX3+X;+Fx’_

(35)

..',_ ~-%
where F:(/-—y) ((X;v‘ll)z + X:) /+ ﬂ(()(,+ll-—f)z+ X:) %

These are of the form x = fk(x,a ) where U corresponds to @ , a parameter.
The fi's (k = 1, ..., L) are autonomous and regular except for x, * 0, and
either xy = - # or xy = 1 -# so that in general a solution exists. In
particular, for M = O, a periodic solution exists and it is this solution that
we wish to continue for 4 ¥ O.

For the more general case, suppose that for § = f*, a - a” a non~

equilibrium but periodic solution exists, denoted formally by
»*
X= X(t, ", o) (36)

which is contained entirely within some domain of regularity of the functions

involved. This solution holds for all real t, since
* »*
X(Et7x, g% 0% ) = 2 (E,4% , 0% ) (37)

where T is not necessarily the smallest positive period of the motion.
Siegel then demonstrates that continuation of this solution for 4 # O

holding the period 7% constant is not possible. To see this, set

12
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e (€a) = Xe (756, a)— ¢« (38)

which gives, on putting € = 0 in (37), ¥y ( &, a) = O for a periodic solution.
We have then m equations in the m + 1 unknowns 61’ sees £ A As a

consequence of the implicit function theorem and the fact that x = x(t, f*, a”)

is a periodic solution, the m equations
% (§,a) =0 (39)

can be solved for the § as functions of @ provided

@, : (E g a?

But this determinant is necessarily zero since essentially fixing the period
and allowing the initial conditions to vary just selects a different starting
point on the same periodic solution, that is, the selection of the § is limited
to points on the same trajectory.

There are two means of overcoming this problem. The first method is to
allow the period T to vary and fixing some other quantity, such as a coordinate.
It is no restriction to suppose that § m May be fixed thus giving the extra

condition § = é; .

13
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By choosing €n1- 5: we are restricting the variation of the initial
»
conditions 51, eers &y to the m-1 dimensional plane x = §p - On
requiring further that the solution a= g%, ¢ = ¢ ¥ 1is not tangential to this
plane, but truly intersects it, we ensure that the solution ofﬁk( T, ¢ ,a) =0
does not give the same orbit as the known one with § = ¢¥%, a= ag¥*. The

situation is depicted in Figure 2.

= Constant

Figure 2
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However in the case of the restricted three body problem the Jacobi integral
2 z 2 z
WX, u) =g (X pxd =X = X)) = F (b1)

causes the value of the associated functional determinant to be zero. In the
second method, a sufficient requirement for the existence of periodic orbits
near H = O with period T = ™ is just the existence of the Jacobi integral.
This method is used by Siegel to demonstrate the existence of certain periodic

solutions for the restricted three body problem.

15
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FUTURE WORK

During the next phase, emphasis will be concentrated upon:

Chapter 19 Poincare Continuity Method

Chapter 20 Fixed Point Method

Chapter 21 Content =~ Preserving Analytic Transformations

Chapter 22 Birkhoff Fixed Point Theorem

Chapter 26 Lyapunov Theorem

Chapter 27 Dirichlet Theorem

Chapter 28 Normal Form of Hamiltonian Systems

Chapter 29 Content - Preserving Mappings
These chapters are directly related to the contractual scope of work. The
theorems and concepts presented here will be applied in developing the techniques

for analyzing stability of periodic motions.
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